
Skewray Roadmap
Brian M. Sutin

Skewray Research, LLC

ABSTRACT

The author has open-sourced a program for optical modeling of astronomical instrumentation. The code allows for
optical systems to be described in a programming language. An optical prescription may contain coordinate systems and
transformations, arbitrary polynomial aspheric surfaces and complex volumes. Rather than using a plethora of rays to
evaluate performance, all the derivatives along a ray are computed by automatic differentiation. By adaptively
controlling the patches around each ray, the system can be modeled to a guaranteed known precision. The code currently
consists of less than 10,000 lines of C++/stdlib code.

keywords: optical design, ray tracing, software tools

1. INTRODUCTION

The state of the art in professional optical raytracing has not changed significantly in more than 40 years. For example
CODE V1 is still one of the best available codes for optical design. This is despite the fact that optical journals every year
have many papers on raytracing. The skewray optical raytracing code was created in order to test out various random
ideas that might turn out to be innovations. The unfortunate side effect of this philosophy is that the resulting code is
strange to use, with a steep learning curve. This may limit the resulting popularity for general usage in the design
community, but popularity is not an objective.

The code itself is written in C++03 and uses the C++ Standard Library extensively. Flex & bison are the only other tools
used for code generation. The code is loosely based on a previous, similar raytrace program9,14 that was used from 1994
to 2003 at UCO/Lick Observatory and Carnegie Observatories. That code was oriented towards analysis by massive
numbers of rays, and so optimized for speed. For skewray, no effort is spent on speed, but rather on algorithms that do
not require large numbers of rays.

The previous code also had a complex, hierarchical database system. As an example, an optical glass index might be
called out as “Materials/Glass/Ohara/i-line/BSL7Y/Melt/J02743/index.” Since hierarchical databases are a great way to
hide data, and many people do not think hierarchically, skewray's database only has two levels, objects and object
properties.

This paper mainly consists of brief descriptions of various ideas that are being worked. Not all of these ideas have been
implemented in code yet. A status is given at the end of the paper.

2. OPEN SOURCE

All of the skewray code is open sourced on Github3. The code is released under the GPLv3 license. This is perhaps the
most important innovation implemented; most non-commercialized optical raytrace codes have disappeared at the
retirement of their authors (eg, KDP4), or may to do so in the future (eg, OARSA2). Various unit tests are available so
that users can confirm that the code runs correctly without trying to read opaque and confusing source code. A manual
and various design file examples and unit tests are available on the Github site.

3. SYMBOLIC

Describing an optical system to an optical code can be a very frustrating user experience. For example, Zemax
OpticStudio5 software uses a spreadsheet format as the input method. Although convenient for simple models, complex
designs quickly get out of hand. The approach that skewray takes is to use a high-level computer language to describe

the optical system. “High-level” here means similar to, say, MATLAB6. The skewray language has the following
features:

• Variable names can be symbolic; e.g., 'θ' can be used for angles.
• Comments and variables are internationalized, so users can comment in their native language. UTF-8, now the

standard encoding for the web, is used for portability.
• Variables hold high-level objects such as coordinate systems, coordinate transformations, optical rays, surfaces,

volumes, and so on.
• Counter-intuitive integers are not included; “X = 1/2” will result in X being 0.5, not zero.
• All math is done in the highest precision available, long double precision. Depending on compiler flags, this

can be anywhere from 64 to 128 bits of precision.
• Almost all of the useful POSIX math functions are available, including the more esoteric functions such as the

Bessel functions (eg, Airy disks).
• A macro system is used to implement system and user-defined functions, as well as multi-dimensional arrays.

The following is a code snippet showing what an input file looks like

Ref 1, eqn (9): compute , scale height of atmosphere H_o/r_oβ
env. = 0.001254 * env.Tk / Kelvin(0)β
Ref 1, eqn (10): compute kappa, or inverse gravitational constant g_o/g
env. = 1 + 0.005302 * sind(env.)^2 ­ 0.00000583 * sind(2*env.)^2 ­ 0.000000315 * env.Hκ ϕ ϕ

This example is taken from an input file that computes atmospheric dispersion. A nice advantage of keeping design as
source code is that version control systems can be used to maintain the history and design evolution. Modern version
control systems allow maintaining parts of a design separately, without adding any overhead to skewray code.

4. OVERLOADED DERIVATIVES

All floating point variables are considered as independent variables, and all subsequent computations depending on a
variable will also carry along the first derivatives with respect to that variable. This includes any object that depends on
that variable, such as coordinate systems, rays, surfaces, and the more complex results of ray tracing, such as wavefront
error integrated over an aperture. If the user wants to know how sensitive anything is to an input, the answer is trivially
available. These first derivatives are available as symbolic inputs to consequent computations.

As an example, consider a light ray which is propagated through a system to some new location. All the parameters of
the ray are overloaded such that all of the first derivatives are computed automatically. If a ray described by {qi,pi} is
traced, then the complete list of information available after tracing a ray is

t ∂t
∂qi

|
pi ,α

∂t
∂ pi

|
q i ,α

∂ t
∂α|

q i , pi

qo

∂qo

∂qi
|

pi ,α

∂qo

∂ pi
|
q i,α

∂qo

∂α |
qi , p i

po

∂ po

∂qi
|

p
i
, α

∂ po

∂ pi
|
q

i
,α

∂ po

∂α |
qi , p i

.

(1)

The α represents any other independent variables that the ray might depend on, such as wavelength, surface curvatures,
&c.

If the final time value t does not depend on {qi,pi}, then the matrix of {qo,po} partial derivatives for a conservative
system will have only 18 degrees of freedom, rather than 36 (see Generating Functions below). This interdependence of
the derivatives can be used to confirm that ray tracing is obeying physical principles, as well as confirm computational
accuracy.

5. TRANSFORMATIONS & COORDINATES

Even for very simple optical systems, multiple coordinate systems can be useful. Not only do optical elements need to be
moved into position, but sometimes an analysis needs to be done at an entrance or exit pupil, or an analysis depends on
the locations of the elements. Telescopes are full of moving parts, and these coordinate systems can be dependent on
variables as well.

A relatively complete set of operations are available for handling of transformations and coordinate systems. These
include translations, rotations, multiplication, inverse, division both on the right and on the left, and rotation about an
arbitrary axis. For example, a code snippet for some coordinate systems:

%number = 2 * atand(cosd() * cosd(IEA) * sind(IBA) + sind() * sind(IEA), cosd(IEA) * cosd(IBA))θ ζ ζ
%number = acosd(­sind() * cosd(IEA) * sind(IBA) + cosd() * sind(IEA)) / 2Φ ζ ζ
%coordinate M1CRS = ECRS * zmov(­D_EL_M1) # Primary Mirror vertex
%coordinate M2CRS = M1CRS * zmov(D_M2_M1) * xrot(180) # Secondary Mirror
%coordinate M3CRS = ECRS * zrot(90+) * xrot()θ Φ # Tertiary Mirror

6. SURFACES & VOLUMES

Many ways exist to define optical surfaces10. The approach skewray takes is to define the shape of a surface as a function
over ℝ3. The actual surface consists of the points where the function is zero. The shape of a surface 'S' is, in set notation,
{r∈ℝ3 |S(r) = 0}. For example, {x2 + y2 + z2 – 1 = 0} is the unit sphere. The most common surfaces are supplied as
macros.

Any surface shape that is polynomial in x, y, and z can be modeled. This may seem like a significant limitation, but the
vast majority of surface shapes used in optics are polynomial. These include planes, spheres, paraboloids, hyperboloids,
ellipsoids, cones, cylinders, toroids, parabolic concentrators, Cartesian ovals, standard aspheres, Zernike polynomials,
and so on.

Note that the above paragraphs describe the shapes of surfaces, not the actual surface itself. If surfaces were infinitely
thin 2-dimensional manifolds, then a point described by a floating point number will almost always not be exactly on the
surface. Instead, surfaces in skewray are fuzzy or spongy; a point associated with a ray is on a surface if the point is
within some fraction of the ray wavelength. The wavelength fraction is chosen by the user.

A volume is defined as the point in space where a surface is greater than zero. Complex volumes can be built up by
boolean logic. Shapes of almost arbitrary complexity can be built up this way. This is analogous to the way that the 3D
modeling program OpenSCAD7 works.

Fuzzy surfaces add an interesting aspect to determining if a ray in inside a volume. A ray near the boundary surface of a
volume might or might not be inside the volume, so trinary logic ('true', 'false', and 'maybe') is required.

7. EULERIAN

Fluid mechanics has two ways of describing how simulations are done, Eulerian and Lagrangian. In Eulerian, the
equations are written with the walls stationary and the fluid flowing through a grid. In Lagrangian, the equations move
with the fluid, and the walls move past at the fluid velocity. Smoothed Particle Hydrodynamics (SPH) is an example of a
Lagrangian implementation.

The same analogy can be used for ray tracing. 'Sequential' ray tracing is often done using the Lagrangian paradigm,
where the the surfaces are always at the origin and the rays are translated and rotated to approach each surface. This is
done this way because otherwise complex aspheric surfaces would need to be transformed to arbitrary locations in space.
'Non-sequential' ray tracing is done using the Eulerian paradigm, where the “next” surface is not clear until the ray has
been traced to all contending surfaces. Surfaces are often approximated by a mesh, NURBS, or similar.

The approach taken by skewray is to use the Eulerian paradigm for sequential and non-sequential ray tracing. This is
done by transforming surfaces to their true location, since a linear coordinate transformation of a polynomial is another
polynomial.

8. APERTURES & STOPS

Since skewray is not built on the idea of a paraxial system, the difference between a stop and an aperture is not entirely
clear. We shall use 'stop' for something that prevents a ray from proceeding, at the place where it occurs, and use
'aperture' for a stop or the image of a stop projected by optics in the system. The kinds of stops that we consider are

• physical stops; eg, lens and mirror edges
• negative spacings such as feathered edges on lenses
• missing a surface
• total internal reflection boundary
• non-existent grating orders

Because derivatives are carried during ray tracing, all of these stops can be linearly (or quadratically) approximated
when a ray passes nearby. Since the ray carries derivatives, the linear transformation from any place to another in the
optical system is available as well. Consequently, every ray through the system has along with it a complete set of
apertures corresponding to every possible way the ray might be stopped. These apertures are then used as the boundaries
of integrals over bundles of rays.

9. GENERATING FUNCTIONS

As long as the physics used to trace rays is somewhat realistic and does not include anything dissipative (such as scatter),
then the system is Hamiltonian. What that means in practice is that the transformation that takes a ray from one part of
an optical system to another is a symplectic or canonical transformation. These transformations are special in that each
transformation has a generating function, usually called a characteristic function or eikonal in optics. The upshot of all
these buzzwords is merely the existence of generating functions.

A generating function is a function of half of the input variables{qi,pi} and half of the output variables {qo,po}. If the
variables are chosen to be the input and output ray positions, then then a quadratic approximation to the exact generating
function would be

G(qi ,qo)=G const+Gi⋅qi+Go⋅qo+qi Gii qi+qi Gio qo+qo Goo qo . (2)

Here Gi and Go are row vectors and Gii, Goo, and Gio are matrices. Since skewray computes all of the first-order
derivatives, tracing a single ray gives enough information to compute a generating function out to second order, or to
first order along with derivatives with respect to independent variables. The generating function is then a description of
the optical system near the ray. Any combination of input and output variables may be chosen, but it so happens that if
the two spatial points are chosen that are not conjugate to each other, then the generating function is the optical path
length. The input and output ray angles can be found by taking the partial derivatives,

∂G
∂qi

=pi
∂G
∂qo

=−po . (3)

The Seidel aberrations are nothing more than the third-order terms of the polynomial expansion of G, assuming that the
system is axially symmetric. The Seidel aberrations can be computed by using the independent variables u=q·q, v=p·p,
and w=q·p rather than q and p, and then using a generating function with a quadratic approximation in u, v, and w.

From the generating function, quantities such as RMS wavefront error (WFE) and RMS spot size can be computed
analytically. For diffraction-limited applications, RMS wavefront error is a reasonable measure of performance. RMS
spot size, however, is not guaranteed to converge (eg, diffraction) and is not a particularly good measure of seeing-
limited performance. Better are integrals over the Point Spread Function (PSF), such as Point Source Sensitivity (PSS)12

or Equivalent Noise Area (ENA)13. Since the final spot at the image surface can be folded over, computing the PSF
becomes a topological problem. Creating an algorithm to compute the PSF from a generating function is possible, but
not trivial.

Generating functions cannot be used for all optical raytrace problems, Scattering, for example, is a non-conservative
process, so the generating function approach is not applicable. However, overloaded derivatives can be used to
accelerate the modeling of scattering. An outline of such an approach is given in reference [11].

10. TESSELLATION AND GUARANTEED PERFORMANCE

When the user wants to know something about the system such as wavefront error or spot size, having the value to a
guaranteed precision is very useful. For a very crude system which may be evaluated repeatedly by an optimization
routine, very crude precision is useful in order to avoid wasting computational effort. For a system being evaluated for
performance, the program should dynamically choose the number of rays used in order to achieve the desired precision.

This precision can be obtained by tessellation. The space of independent variables (aperture coordinates, wavelength,
&c) is divided up into smaller and smaller regions. For each region, an estimate is made of the error, and if this error is
too large, the region is broken up. Since tessellation in multiple dimensions is already confusing enough, skewray forces
the regions to be n-rectangles. N-triangles (eg, 3-tetrahedrons) are more efficient, but considerably more complex to
tessellate and integrate over.

When evaluating integrals over generating functions (eg, WFE, spot size), the first-order generating function gives
integrals with derivatives, while the second-order generating function gives a more accurate estimate of the integral
value, as well as an estimate of the precision being obtained by the first-order integral.

The same tessellation algorithm can be used to generate graphical output, either to the screen or to an external CAD
program. Surfaces are broken up into smaller and smaller regions until the surfaces appear smooth to the eye.

11. OPTIMIZATION

Optimization is one of the most important aspects of optical design software. Designers want a magic button that finds
the best possible design, given various free parameters. There are several reasons why this approach may not be the best.
First, the “No Free Lunch” theorems8 state roughly that all optimization algorithms are mediocre over all problems. So a
particular algorithm might be good for most optical design problems, but there is no guarantee that some design problem
outside of the typical will be optimizable. Second, having a requirement that a particular design be the best possible is
not verifiable; proving that a design is optimal is probably more difficult than finding the optimum in the first place.
Third, a requirement that a design be optimal is not a SMART goal; a designer tasked with finding the best solution has
no stopping criteria.

Better is to design to a set of specific, verifiable requirements. For a set of requirements {Rm}, functions of the
independent variables Vn, The requirements are

R0(V 0 ,V 1 ...V N)≤0
R1(V 0 ,V 1 ...V N)≤0

...
RM (V 0 ,V 1 ...V N)≤0.

(4)

So rather than require that, say, the RMS spot size be small, we require that the RMS spot size be smaller than some
reasonable value, such as two or three pixels.

We could use these requirements to form a “merit” function (really a “demerit” function - big is bad), by forming a
single function out of weighted least squares,

M (V)=∑
m | Rm>0

W mRm
2 . (5)

The issue with this concept is that the demerit function is both overly restrictive and hides the structure of the problem.
Which of the Rm requirements are not being satisfied? The set of conditions {Rm} define a volume of the solution space
that meet requirements. The desired outcome of the process is not to find the best possible solution, but to find a solution
that meets all of the requirements by being inside the specified volume.

The proposed optimization algorithm is a combination of a simplex method and Levenberg-Marquardt. First, consider
the information gleaned from a single sample point,

R0

∂ R0

∂V 0

∂R0

∂V 1

...
∂R0

∂V N

R1

∂ R1

∂V 0

∂R1

∂V 1

...
∂R1

∂V N

 ...

RM

∂ RM

∂V 0

∂ RM

∂V 1

...
∂ RM

∂V N

.

(6)

Enough information exists from this single sample point to create a trivial solution-finding algorithm. Form the partial
derivatives into an M×N matrix, find a Penrose inverse (eg, singular value decomposition), and use this to do a Newton-
Raphson zero-find,

V new=V old−α(∂ R
∂V)

−1

R for { m | Rm>0}, α<1. (7)

This method is almost guaranteed to fail, but it does show the power of overloaded derivatives. The linear approximation
can be graphically imagined by considering Figure 1, where each requirement, once linearized, is a half-plane, and the
solution is a region where all the half-plans overlap. An improvement is to use quadratic approximations to the
requirements, in which case the requirements appear as ellipsoids, as in Figure 2.

The second derivatives of the {Rm}, needed to make a quadratic fit, can be approximated given a sufficient number of
sample points, at least M/2. Positive-definite (or negative-definite) second derivative matrices create a N-ellipsoids in

Figure 2: 3 quadratic constraints, shown in 2-D spaceFigure 1: 3 linearized constraints, shown in 2-D space

ℝN, and finding the intersections of ellipsoids is relatively easy, while non-definite matrices make hyperboloids that are
difficult to work with. The algorithm is then as follows:

Step 1: Use the method of equation (7) to find a set of initial sample points (the simplex).

Step 2: Use the sample points with derivatives to approximate a quadratic fit to each {Rm} (least squares).

Step 3: Add a constant diagonal term to any non-positive-definite (or non-negative definite) quadratic Rm fit (Levenberg-
Marquardt).

Step 4: For each sample point, create an M-digit binary number, where the mth bit is 0 if the mth requirement is met (1 for
a negative-definite ellipsoid).

Step 5: Consider each Rm as an N-ellipsoid. New sample points are proposed by looking for intersections between the
ellipsoids of simplex points with one bit set to zero.

Step 6: Sample points with a large number of bits or duplicate binary numbers can be discarded from the simplex.

Step 7: Re-adjust any sample points having binary digits that changed due to derivatives depending on a changing
simplex.

Step 8: If no binary number is zero, go to Step 2.

A nice aspect of this method is that conflicting requirements are highlighted, which is something not necessarily evident
in standard optimization methods. The advantage of this algorithm is not that it is a better optimizer, but that the trail of
bread crumbs left behind after a failure to find a solution are very informative as to why, and can lead the designer to a
better topology for the design in question.

12. STATUS

Major Task Status

open source done

high-level language for describing physical models done

internationalization - native language variable names and comments done

overloaded derivatives done

arbitrary coordinate systems and transformations done

arbitrary polynomial surfaces done

sequential and non-sequential ray tracing in progress

tracing with guaranteed tolerance in progress

tracking of all apertures not started

requirement satisfaction, rather than optimization not started

13. REFERENCES

[1] Synopsys, Inc., CODE V, <https://optics.synopsys.com/codev/>, (2016).
[2] Epps, H. W., OARSA, (private communication).
[3] Sutin, B. M., Skewray, <https://github.com/skewray/skewray>, (2016).
[4] Klein, J. E., KDP, <http://www.ecalculations.com/>, (2016).
[5] Zemax, LLC, Zemax OpticSudio, <http://zemax.com/os/opticstudio>, (2016).
[6] The MathWorks, Inc., MATLAB, <http://www.mathworks.com/products/matlab/>, (2016).
[7] Openscad.org, OpenSCAD, <http://www.openscad.org/>, (2016).
[8] Wolpert, D. H. and Macready, W. G., “No free lunch theorems for optimization”, IEEE Trans. Evol. Comp., 1, #1
(1997).
[9] Sutin, B. M., Skewray, <https://github.com/skewray/skewray_old>, (2016).

[10] Stavroudis, O. N., [The Mathematics of Geometrical and Physical Optics], Wiley-VCH, Weinheim, p64 (2006).
[11] Rock, D. F., “Using differential ray tracing in stray light analysis”, Proc. SPIE, 8495 (2012).
[12] Seo, B. et al, “Analysis of normalized point source sensitivity as a performance metric for large telescopes”, Appl.
Optics, 48, issue 31, p5997 (2009).
[13] King, I. R., “Accuracy of measurement of star images on a pixel array”, PASP, 95, p163 (1983).
[14] Sutin, B. M., “New Methods of Optical Modeling for Astronomical Instrumentation”, Bull. AAS, 28(N2):905
(1996).

